☰
These guidelines are based on the working folder located here.
Table of contents
A. Thermophysical
1) Species thermophysical properties
2) Adding/removing energy modes
- 2.1 Disabling/enabling the vibrational mode of a molecule
- 2.2 Disabling/enabling the electronic mode of a particle
3) Choosing a thermoDEM dictionary
B. Transport
1) Species transport properties
- 1.1 Inviscid simulation
- 1.2 Viscous simulation with constant shear viscosity and thermal conductivity
- 1.3 Other transport models
- 1.4 Print species shear viscosity and thermal conductivity
2) Mixing rules
3) Mass diffusion
- 3.1 Disable multi-species diffusion
- 3.2 Lewis number model
- 3.3 Fick’s law and binary diffusion models
- 3.4 SCEBD model
- 3.5 Additional features (to Fick and SCEBD models)
C. Chemistry
1) Multi-species flow
2) Non-reacting flow
3) Chemically-reacting flow
- 3.1 Enable chemistry
- 3.2 Implement a chemical reaction
- 3.2.1 Forward reaction
- 3.2.2 Reverse reaction
- 3.2.3 Third-body interaction - 3.3 Increase robustness
4) To go further: chemistry-vibration coupling
D. Nonequilibrium
1) Thermal equilibrium
2) Thermal non-equilibrium
3) Mean free path and breakdown parameter
- 3.1 Mean free path
- 3.2 Knudsen number
- 3.2.1 Overall Knudsen number
- 3.2.2 Breakdown parameter: gradient-length Knudsen number
4) Chemistry-vibration coupling
- 4.1 Park TTv model
- 4.1.1 General settings
- 4.1.2 Reactions dictionary - 4.2 Coupled vibration-dissociation-vibration (CVDV) model
E. Turbulence
1) Laminar flow simulation
2) Turbulent flow simulation
F. MHD
1) Enabling/disabling MHD
2) MHD models
3) Electrical conductivity models
4) Hall parameter
5) Creation of an initial magnetic field and electric potential
G. Initial conditions
1) The include/ sub-folder
2) Species mass or molar fractions
3) Temperature fields
- 3.1 Trans-rotational temperature
- 3.2 Vibro-electronic temperature
- 3.2.1 Single vibro-electronic energy pool formulation
- 3.2.2 Multiple vibro-electronic energy pools formulation